A's LabⅡ

アスラボと読みます。マイクロマウスやロボトレースの大会に向けて、機体の構造設計・回路設計・基板設計・プログラミングを中心に行っています。趣味のパワーエレクトロニクス系では、テスラコイルやコイルガンなどを製作・評価・改善を繰り返しています。興味を持って頂ければ幸いです。アドバイスや質問、感想などございましたらコメント欄にお願いします。 また、私のブログは背景が暗めの設定を想定しているため、白背景では文字が読みづらい点があります。

!!DANGER HIGH VOLTAGE!!
このブログには生命に関わる危険な記事が含まれています。
記事を参考にされる際は、全て自己責任でお願いします。

2018年クラシックマウス「Aventa」について

 2018年クラシックマウスはAventaで出場しました。このマシンは10月中盤に基板と3D部品を発注し、1ヶ月間でデバッグと調整を行った機体です。今回の記事は、このマシンについてまとめます。

目次

  • マシンスペック
  • 基板の配線
  • 高速パラメータ
  • キャンバー角
  • 壁センサー配置
  • 3Dプリント造形
  • 吸引スカート
  • 探索走行
  • マシンの失敗点
  • まとめ


マシンスペック

DqcCPAvUUAAcXG0

  • 機体名:Aventa(アヴェンタ)
  • 基板:1.0mm (前期:黒, 後期:黄色)
  • マイコン:RX631 (100pin)
  • 壁センサー:IR発光ダイオード SFH-4550
  •       IRフォトトランジスタ QSD124(前壁用), ST-1KL3A(横壁用)
  • ジャイロセンサー:MPU6000
  • エンコーダ:AS5145B
  • モーター:駆動用 φ8.5, 20mm(AliExpressで買い漁って選別したもの)
  •      吸引用 φ10, 15mm(AliExpressで買い漁って選別したもの)
  • モータードライバ:駆動用 DRV8835
  •          吸引用 AO3400
  • ギヤ(モジュール0.3):スパー70枚歯, ピニオン15枚歯, エンコーダ38枚歯
  • バッテリー:LiPo 2S(7.4V)150mAh 30C
  • 重量(g)78
  • サイズ(mm):L85, W70, H30


基板の配線

 プリント基板の設計はEagleを使いました。最近はバージョンがころころ変わるので、慣れた頃にまた新しいバージョンが出るという不具合が起こっています。

bandicam 2018-10-14 19-16-37-947
bandicam 2018-10-14 19-16-42-963


高速パラメータ

 例年は全日本で使ったパラメータを詳しくまとめていますが、今年は走りきれなかったので細かいことは書きません。動画のパラメータは参考に載せておきます。


行き
  • 加速度:加速時17[m/ss], 減速時20[m/ss]
  • 旋回速:1.8[m/s]2.2[m/s]
  • 直進最高速:5.6[m/s]
帰り
  • 加速度:加速時12[m/ss], 減速時15[m/ss]
  • 旋回速:1.5[m/s]2.0[m/s]
  • 直進最高速:3.0[m/s]

 高速域の壁補正がうまく制御できておらず、3.5[m/s]以上の直進はフラつく時があります。斜め直進時は角度補正で走らせているので、5[m/s]以上でも安定して走れています。現状では壁補正を切って角度追従させたほうが安定するので、壁の追従制御が今後の課題です。 この点はニュートラルキャンバーの変速四輪が安定するため有利です。


キャンバー角

 適度なネガティブキャンバー(以下「ネガキャン」)は美しいですよね。今作のマウスにはキャンバー角をネガティブ方向に3度つけました。ホイールだけでなく、モーターからエンコーダまで全て3度傾ける必要があるため、マシン設計が大変になります。ピタゴラスの定理を用いながら、モーターの高さ、車高の調整、自作磁気式エンコーダの軸合わせ等を行いました。ネガキャンにする利点と欠点は以下のとおりです。

メリット

  • オシャレ、美しい、ロマン
  • 高速旋回で接地面積を最大にする
  • 荷重移動を味方にする
  • 賢くトレッド幅の増加

デメリット

  • 高速域の直進安定には制御の強化が必要
  • 直進加減速で最大のグリップ力を発生できない

(結論、今年の全日本の迷路ほんとやめてほしい)


高速旋回で接地面積を最大にする
 ネガキャンは見た目だけで、常時タイヤの接地面積が減って動力性能を落とすという誤解があるようですが、適切にキャンバー角をつけて高速旋回すると、ニュートラルキャンバーよりも接地面積が増加します。ここでポイントとなるのが高速旋回です。タイヤがヨレるくらい高速な旋回をしないと、接地面積は稼げません。実車の場合は横Gをしっかりかけてやらないと意味がありませんが、マウスの場合はタイヤがすり減ってくると、図のように偏摩耗します。

bandicam 2018-12-13 14-52-28-725

大げさに書いているので、”オシャレ、美しさ”から離れてしまっていますが、今は気にしないことにします。実際のマウスの偏摩耗具合を見ても、有効に広い面積を使えていそうです。

DSC_0710

荷重移動を味方にする
旋回時荷重移動した際、片輪に荷重が集中します。このとき、荷重の乗った1輪のタイヤが旋回をサポートするように働きます。上図のAとBではBの方が円周が大きいので、1輪のタイヤでもタイヤ径に差が発生します。遠心力により重心移動をさせて片輪に荷重を乗せれば乗せるほど曲がりやすくなります。今作のマウスは、バッテリーを機体の中心に立てて乗せています。ネガキャンのマシンでは重心移動も旋回に有利に働くため、マシンをコンパクトにする方に注力しています。

直進安定性についてですが、直進時には両輪に同程度の荷重がかかるため、マシンが精度良く作られていて、制御がしっかりしていればブレることはありません。そんなうまいこといかないので苦労させられます。

トレッド幅の増加
 トレッド幅を大きくしたければ、ホイールにスペーサを入れればいいだけの話ですが、キャンバー角を付けることによって、旋回軸の慣性モーメントを小さくしたままトレッドを広げることができます。トレッド幅を同じにした際、ネガキャンの方が重たいものを内側に寄せることができています。マシンの中心にモーター等が寄るので、その分のクリアランスを考慮する必要があります。

 また、ネガキャンのホイールにスペーサを入れると、トレッド幅を広げると同時に車高を落とすことができます。マシンの様子を見ながら、ツライチになるまでスペーサを入れて車高を落としましょう。

直進加減速で最大のグリップ力を発生できない
 理論上の利点は色々ありますが、あまり倒しすぎてもいけません。直進時は接地面積が減っている状態になり、直進加減速時で不利になります。タイヤを偏摩耗させて接地面積を増やした場合は直進安定性が悪くなります。クラシック競技の場合、加速度よりも旋回速を上げたほうが楽にタイムが伸びそうなので、適度なキャンバーは有利と判断して採用した次第です。ここは頑張って制御で補います。


壁センサー配置

 横壁センサーの向きが少し特殊な配置をしており、なぜこんなことをしたのか質問を受けました。個人的に横壁センサー配置のポイントとしていることは、壁切れ位置と角度です。壁切れの位置は図の「壁切れポイント1-3」に示すとおり、大きく分けて3パターンに分けられます。

bandicam 2018-12-06 21-29-05-496
 それぞれに利点と欠点があり、論争が起こる場所ですが、私は「壁切れポイント1」の柱より奥を見ています。このためには、センサーに大きな角度をつけるか、距離を離す必要があります。センサーに大きな角度を付けた場合を考えます。

bandicam 2018-12-10 01-15-01-433
 図に示すように仮想センサー2を追加して、マシンに10度の傾きをつけてみました。この図から壁切れ位置が大きく影響されることがわかります。なるべくセンサーの角度は小さくしたいものです。

センサーと壁の距離は、遠すぎても近すぎても問題があります。遠い場合はセンサー値が低くなり、壁の読み違いが多くなります。この問題は、半値角が低く高輝度のLEDを採用し、フォトトランジスタに高精度なものを使用することにより、ある程度解決できます。この機体は前壁と横壁でフォトトランジスタを変えていて、横壁の方に高精度な物を使っています。近すぎる場合の問題点として、センサー値の飽和が挙げられます。壁との距離を近づけているはずなのに、センサー値が上がらない、逆に下がっていく現象のことです。LEDの発光量を減らすことである程度解決できますが、減らしすぎるとやはり壁の読み違いが起こります。


3Dプリント造形

 モーターマウント、ファンマウント、ホイール、吸引ファン、シムリング、エンコーダの磁石ホルダ付きギヤ(モジュール0.3)をDMM.make3Dプリントサービスで製造しました。

bandicam 2018-10-17 01-39-33-338

DqVoqWNUcAAVMqp
 材質はアクリルのウルトラモードの黄色で5,100円(送料込み)程度です。価格は高めですが、一般家庭用の3Dプリンタでは出せない精度で造形してくれます。クラシックマウスに使うとすぐ割れる等の噂があり不安でしたが、軽さと自由度の高さは魅力的なので、一度使ってから考えようと思い造形を依頼しました。やってみた結果、一度もハードが壊れることなくシーズンを終えました。意外となんとかなるものです。これはモーターが軽いことが効いていると思います。個人的には、モーターマウントにアルミを使うよりも、アクリルを使ったほうが曲がらなくていいと思います。割れたら交換すればいいだけの話なので。OB会の時に先輩方から、アクリルは湿気によって脆くなるという話を伺いました。CNCで切削できるものは、なるべくPOMを使ったほうが良いそうです。


吸引スカート

 吸引スカートは2層構造になっています。1次スカートと2次スカートに分けられ、1次スカートには両面基板、2次スカートには秋月のチャック袋を使いました。生基板は決して軽くはありませんが、腹下に配置できるので低重心化を狙えるということと、基板の強度を上げてくれるメリットがあるので、あえて重い両面基板を用いました。

DSC_0491

 写真は製作途中のもので、1次スカートの内側の2次スカートをカッターナイフで切り抜きます。基板の裏面にジャイロなどの部品を取り付けているため、1次スカートの厚みは1.6mmにしましたが、少し分厚かったので次回作は薄くします。写真では写っていませんが、マシンの先端にもシートを張り、2次スカートが捲れないようにしています。吸引ファンの3Dモデリング画像も参考に載せておきます。

DewbM-XUwAA1ClI

 吸引力は動画のとおりです。Z軸の角速度をゼロにするようにPID制御をかけつつ、逆さまにしたりできます。この動画はTwitterで39,000件ほどのインプレッションをいただきました。



探索走行

 今回実績を得たものはフル迷路全面吸引探索です。

bandicam 2018-12-10 14-26-54-241

 これが全面探索を終えたログデータです。フル迷路では、吸引探索、全面探索共にはじめての試みでしたが、無事マップデータを作ることに成功しました。今回は安全をみて1.0[m/s]で探索を行いましたが、部室の16*8区画の迷路では1.3[m/s]の全面探索に成功しています。来年の地区大会では更に安定感を上げて、その速度でお見せできればと思います。

 参考に1.3m/s探索の動画です。


 今まで探索中の既知区間加速をやろうと思ったことがありませんでしたが、どうせ旋回速を上げるなら探索タイムも上げたいので、今後既知区間加速の実装も行います。


マシンの失敗点

レギュレータの発熱
 今回の回路は約8Vのバッテリー電圧から3.3Vにリニア・レギュレータで降圧し、その電力でモーター以外を賄っているので、とにかく発熱が酷くて何度も火傷しそうになりました。レギュレータは降圧分の電力が熱に変換されて熱くなるので、変換効率がとても悪いです。そこで、手持ちのDC-DCに換装しました。

DSC_0709

DC-DCはスイッチング電源なので、インダクタの内部抵抗やスイッチング損失程度の発熱しかありません。換装したことにより発熱が殆どなくなりました。配線が雑なので偶にマイコンのリセットがかかったり、断線したりします。

重心バランス
 重心バランスはマシン設計のときに一番重要視する部分です。しかし、作ってみないとわからないところがあり、毎年マシンを思いっきり改変している私からすると、過去のマシンも参考になりません。設計段階で後ろ重心かなと思いながら製作し、更にDC-DCが後ろに乗った事により、少し後重心になってしまいました。吸引モーターに大きめのモーターを使っているのも、バランスをとるためです。吸引モーターを小型にした場合、基板の裏面に鉄板を貼り付けてバランスを取る必要があります。2輪マウスは重量バランスが非常にシビアです。次回作では、最初からDC-DCを搭載することを前提として重量バランスの整ったマシンを設計します。

角加速度の上げすぎ
 2輪で重心バランスがある程度しっかりしているマウスは本当に素直に動いてくれます。探索程度の低速であれば角加速度を無限にしても走れます。しかし、そんな物理的によろしくない目標値を与えて調整しても、路面が少し低摩擦になるだけで制御が破綻してしまいます。部室の迷路は割とグリップできる路面だったので、そこで調整してもツルツルな板の上では走れません。完全に失敗でした。来年は角加速度を落として安全に曲がれる機体を持っていきます。

壁センサーのキャリブレーション

 今までは最短走行時に壁切れができればいいな程度のアバウトな制御でしたが、今回から壁切れで距離補正を厳格化して走行するように制御を変えました。その変更が仇となり、会場の照明の違いで誤差が大きくなり、走らなくなったと考えられます。試走会で路面の問題なのか苦手パターンの問題なのかと悩んでいましたが、会場の照明の問題だった可能性があります。次回の大会までには会場で簡単にセンサー値をキャリブレーションする機能を実装します。

全日本のパラメータ選択
 これはマシンの失敗点ではなく、私が全日本でやらかした失敗です。最短走行の1走目でコケたにも関わらず、2走目でパラメータを上げてしまいました。速い旋回のほうが入念に調整していたのでそれを使いましたが、スタートを切って2回目の旋回で姿勢が乱れてフェイルセーフがかかりました。そして最短3走目、モードを暗記できていなくてパラメータ選択をミスりました。来年は地区大会をできるだけ回って、人為的ミスを少なくするようにします。もしかすると、吸引の2次スカートが乱れていたかもしれません。そこを見直しておけばよかったと後悔しています。結局、最短走行の4走目は斜め走行をしない1.0[m/s]の小回りターンで完走しました。クラシックマウス歴3年ですが、斜め走行できなかった全日本大会はこれが初めてなので残念です。


まとめ

 今年の全日本大会は悔しい結果に終わってしまいましたが、今までのマシンよりも遥かにハイスペックなものが作れたので良しとします。今わかっている失敗点は最低限改善して、次に備えたいと思います。そして今年からクラシックマウスは初級者向け(教育用)の競技として位置付けられてしまったようなので、マイクロマウス競技(旧ハーフサイズ)のマシンも製作していきたいと思います。

 最後に今まで製作してきたクラシックマウスの集合写真で締めたいと思います。来年こそは吸引しながら斜め走行を決めたいです。

DtE6xpYVAAE0efa

AviUtlでPV・MVの制作手順の解説

半年以上出遅れましたが、2018年初記事です。今年もよろしくお願います。

 今年最初に行ったサークル活動は、からくり工房I.SysのPVをAviUtlで制作したことです。



 この動画を公開して、様々な方から「動画編集は何のソフトを使いましたか?」等の質問を受けたので、今回の記事はこちらの動画の制作過程について、自己流な点を備忘録も兼ねて紹介しようと思います。

 AviUtlの導入については様々なサイトが紹介しているので、そちらを参考に導入してください。パソコンに不慣れな人はここが第一関門で、様々なプラグインのフォルダ移動をしないといけないので中々難しいと思います。一度導入を済ませてしまうと、インストール不要・承認不要なソフトなので、他のPCにフォルダを移すだけで引き継げます。その点は有料ソフトよりも使い勝手がいいです。ただしWindows専用です。
 このソフトの読み方ですが、制作者KENくんは好きに呼んでもらって構わないとのことで、色々な読み方をする人がいますが、私はエーブイアイ・ユーティリティー派です。プラグインを入れることによってmp4などの動画形式も扱えるようになります。

 まず、この編集ソフトを極めるとどんな動画が作れるのかを先に紹介しようと思います。



 こちらの方の動画は、高レベル過ぎて逆に参考にならないパターンのものですが、このソフトを使いこなせれば一通りやりたいことはできそうだなと思っていただければいいと思います。仮想3次元空間内に好きなように図形や文字、動画や画像を配置することができ、カメラ制御で好きなように動かせるので、操作に慣れるとかなり楽しいソフトです。

前置きが長くなりましたが、PV・MVの制作手順について解説します。

1.全体的構成を大雑把に考える
 今回のサークルPVの場合、マイクロマウスとロボトレースとロボット相撲の3競技を、それぞれて紹介することをメインとして、新入生に入部を呼びかける内容にしようと考えました。ここでは細かいことは考えずに、次の工程に進みます。

2.動画の構成に合う曲を選ぶ
 大雑把に動画の構成を考えたところで、次に曲を選定します。曲の構成によって、動画に使える時間配分も変わってくるので、とても重要な要素です。PV動画には色々とタイプがあるので紹介します。

 ・音声と効果音を用いるもの
 ・どこで切っても当たり障りのないBGMを流すもの
 ・音楽1曲で動画を完結させるもの(MV)
 ・複数の音楽を繋ぎ合わせるもの
 ・効果音の部分と音楽の部分の両方を持ち合わせるもの

 一般的に、下に行くにつれて時間と労力が必要になります。今回は「音楽1曲で動画を完結させるもの」を紹介します。MV(ミュージックビデオ)にも使える手法になるので、自作の曲に動画を付けたい人も参考になるかと思います。
 曲を選ぶにあたって、個人的にお勧めしたいのがNCSNoCopyrightSounds)です。こちらは名前の通り著作権を持たない曲が無料でダウンロードできるので、動画制作界隈で近年注目を集めています。
 動画に合いそうな曲が見つかったら、その曲を解析していきます。

3.音楽を解析ソフトにかける
 音楽にはBPM(Beats Per Minute)があります。BPMはテンポの単位で、一分間の拍数を指します。このBPMによって動画の雰囲気も大きく変わります。お笑い芸人"小島よしお"の「そんなの関係ねぇー」のギャグが売れなかったころ、BPMが高すぎることを指摘されて、テンポを落として改良したところ大ヒットしたそうです。みんなが手拍子できるテンポに合わせることがヒットの秘訣でした。余談になりましたが、BPMの話がでると毎回これを思い出してしまいまいます。これをテレビで見てからは、再生回数の多い動画や音楽はBPMにも注目して鑑賞するようになりました。

 私がお勧めするBPMの解析ソフトはWaveToneです。
bandicam 2018-08-23 14-22-03-246
詳しい使い方は他サイトが紹介しているので省略しますが、要点だけ簡単に説明すると、
 ・WaveToneをインストールして起動
 ・音楽ファイルをドラッグアンドドロップ
 ・ツールバー→解析→テンポ解析を選択
するとこの画像のようなものが出てきます。このグラフがなるべく鋭い方が動画編集しやすいです。テンポがバラバラな曲の場合は、この手法は使えません。AviUtlに表示される音声波形を見ながらの作業になります。
 今回私が選んだ曲は128[BPM]になりました。このBPMと拍子をAviUtlに入力して作業しやすくします。

4.AviUtlに解析結果を入力する
 AviUtlの詳しい使い方についても他サイトが紹介しているので省略しますが、要点だけ簡単に説明します。
bandicam 2018-08-23 17-33-23-939

 ・AviUtlの拡張編集を開く
 ・拡張編集上で右クリック
 ・グリッド(BPM)の表示にチェック
 ・グリッドの設定を選択

bandicam 2018-08-23 17-35-16-717

するとこのような画面が出てくるので、テンポ(BPM)と拍子を入力します。テンポの値を変えると、拡張編集の縦の点線の幅が変わります。拍子の値はテンポの線が拍子の数だけ進んだら太線になります。上の画像でよく見ると、8テンポ進んだら少しだけ太線になっていることがわかります。拍子の値は作業しやすい適当な値を自分で決めてください。
 これでAviUtlの下準備は完了です。縦線があると、テキストや動画などのブロックの位置を適切な場所にスナップしてくれるので、微調整の時間が大幅に短縮されます。

5.素材集め
 ここが一番肝心な部分です。PV・MV制作をするにあたって、下の二択になると思います。

 ・音楽に合わせて素材を撮影する
 ・既に存在する素材を選別して音楽に合わせる

 今回、私のPV制作の場合は後者でした。サークルのデータ共有保管庫の2017年ファイルには140GBあったので、素材に困るどころか一通り眺める事に苦労しました。撮影してくれたサークル部員の皆さん、ありがとうございました。PVの素材はうちのサークルで生産されたものを使い、ネットに上がっている素材にはなるべく手を付けないようにしました。唯一、大学のロゴのみ拝借しましたが、これはグレーゾーンです。某大学では学生に注意喚起しているところもあるそうですが、うちの大学では特に決まりがなさそうだったので使用しました。後述しますが、大学の様々な場所で動画を流していても指摘を一切受けなかったのでセーフということでしょうか。

 次にフォントについて紹介します。フォントはフリーでも配布されていますし、有料の質がいいものも購入することができます。今回は有料のフォントを購入してみました。Design Cutsというサイトで、99%OFFのセールをやっているのを見つけ、数百円ならとつい購入してしまいました。頻繁にセールをやってるみたいなので、高級フォントに触れてみたい方は利用してみてください。

6.動画編集
 やっと本題です。ここが一番時間のかかる部分ですが、AviUtlの使い方は省略します。本当に他サイトが優秀なので何も言うことがありません。サークルPVの動画編集を終えた後の拡張編集の作業ウインドウはこのようになりました。
bandicam 2018-03-02 02-11-35-701
レイヤー数は18、シーン数は5でした。このプロジェクトファイルの配布は行いませんのでご了承ください。質問があればお答えします。
 AviUtlは完全にCPU依存なので、グラボやメモリよりもCPUを強化した方がいいです。因みに私のPCは高校1年の冬に自作したもので、スペックは
 ・CPU:CORE i7-3770K
 ・マザーボード:Z77-V PRO
 ・メインメモリ:8GB×2
 ・グラフィックボード: AMD Radeon HD7800 Series
 ・SSD/HDD 計5枚
 ・電源:600W 80PLUSゴールド
 ・OS:windows10 64bit
 ・PCケース:Z9U3 ブラック
 ・ディスプレイ:23インチ×2(1つは90度回転型)
こんな感じです。普通のパソコンで大丈夫です。

エンコード環境は、プラグイン出力の拡張x264 出力(GUI) Exで、圧縮プロファイルをYouTubeでmp4出力を行いました。HD画質の3分30秒の動画で約100MBです。

-------------------------------------------------------------------
以上です。PV動画を企業に外注すると、物に寄りますが数十万円かかるそうです。この機会に動画制作技術を身に着けてみてはいかかでしょうか。

また、このサークルPVは様々な場所で使われました。
・大学の入学式で新入生全員の前で投映して、ステージで解説を交えて発表
・ロボット関係の一般教養の授業でPVを流して解説
・大学の食堂の天井に設置されている画面で一ヶ月間再生
・新入生勧誘期間中サークルの部屋の入り口で一ヶ月間再生
など。
沢山使っていただけたので、作った甲斐がありました。来年もまた私が作るかもしれないので、その時までに新しいアイディアを考えておきます。

【Trifilar】2017年マイクロマウスの紹介

今年はTrifilar(トリファイラ)で出場しました。

DJCvLAfUEAAy9u1

機体名:Trifilar(トリファイラ)
基板厚:1.0mm (前期:緑、後期:白)
マイコン:RX631 (100pin)
壁センサー:SFH 4550 (IR発光ダイオード)
      QSD124 (IRフォトトランジスタ)
ジャイロセンサー:MPU6000
エンコーダ:AS5145B
モーター:φ8.5, 20mm(AliExpressで買い漁って選別したもの)
モータードライバ:DRV8835 (駆動用2個、吸引用1個)
バッテリー:LiPo_2S(7.4V)150mAh 30C
重量:39g(機体重量(吸引なし))+10g(バッテリー重量)
サイズ:83*44*25

 このマシンは去年の全日本が終わった辺りから構想を固めて、春にはテスト基板発注、夏の終わりごろには動作テストまで済んでいたのですが、初の磁気式エンコーダ自作吸引の追加などで、かなり手こずってしまいました。エンコーダについては磁気シールドの問題が深刻で、モーターには引きつけられるし、磁石を向かい合わせにしているので磁石同士でも引きつけ合って大変でした。
 磁気シールドはモノタロウの鉄スペーサーを購入することにより解決しました。スペーサーの自作は精度が出ない上に欲張って軽量化しようとしてシールド性能が下がってしまうので諦めました。エンコーダはAS5145Bを使用しています。データーシートにはφ6の磁石を使用してくれと書いてありますが、先人のマウスを見るとデーターシートに従っていないものが多く見られます。私は初めてなので仕様書に従って作りました。するとスペーサーも大きくなるし磁石の保持具も大きくなるのでマシン設計が大変になりました。
 吸引機についてはモータードライバの過電流保護の問題が深刻で、普通のNch-MOS-FETを使っておけばよかったと後悔しました。この問題に気付いたのが大会一週間前なので、今回は吸引なしで大会に出ることに決めました。吸引なんて一方向にしかファンを回さないので、Hブリッジである必要は全くありません。個人的にお勧めのMOS-FETはAO3400です。データシートを見ると、30V5Aとマウスには必要十分なスペックを持ち、パッケージはSOT-23と小型、更に逆電圧保護ダイオードが内蔵されています。そして決め手はAliExpressで安いということですね。100個で200円送料無料です。メインモーターを駆動しているDRV8835もAliExpressで買えば安いですよ。

 吸引ファンを2つ搭載する利点は、前後のファンを逆回転させてカウンタートルクを打ち消し合う為と、前後のファンのトルクを可変することにより、旋回の補助をすることができます。以下に図を示します。
bandicam 2017-11-22 19-21-41-789
 パワーポイントで図を作ってみました。緑が基板で黒がタイヤ、黄色い丸が吸引ファン、赤い矢印がモーターにかける電圧です。吸引ファンは逆回転しており、前後の吸引モーターにかける電圧をスラロームと同時に制御することにより、普段はタイヤの摩擦力で機体を曲げていたのが、吸引ファンの力で曲げることができるようになります。その分、タイヤのグリップは横Gに耐えるための摩擦力に注力できるため、旋回速度を上げられるという目論見です。タイヤのグリップには限界があります。その限界を角速度を発生させるために全力を使っては勿体ないですよね。

 そしてこの機体、想像以上に高重心になってしまいました。バッテリーをモーターとエンコーダの上に乗せるしかなくなってしまって、仕方なくそのまま設計を進めたらこうなりました。私が目標としていた物理的に美しい機体とは程遠いものになってしまい、この段階で動力性能は激落ちで、ターン速度も全然でないことが察せました。(たとえ吸引をしたとしても)
 基本的にマシンの旋回速度を上げるには、「重心を低くする&慣性モーメントを下げる&トレッド幅を広げる」この3点だと自分は思っています。高重心・低トレッドだと、旋回するときに片輪の荷重が抜けて制御が不安定になります。旋回軸の慣性モーメントが大きいと旋回しずらくなるので、重い部品はなるべく旋回軸上に寄せて置くようにします。マイクロマウスの場合、トレッド幅に関しては広い方がいいか狭い方がいいか、どちらにもメリット・デメリットがあると思います。
 まずトレッド幅が広い場合、左右のタイヤ両輪に荷重を掛けやすく、旋回時に安定した制御がしやすい利点があります。
 次にトレッド幅が狭い場合、同じサイズの迷路を走らせる上で旋回半径を大きくとれる利点があります。以下にスラロームのシミュレーション結果を示します。

bandicam 2017-11-22 20-06-32-049
    図4. トレッド幅70mmのスラローム
 緑が中心軌道、水色がタイヤの軌道です。重心速度1m/s, 角加速度20000deg/ss, 角速度500deg/sのスラロームシミュレーションです。割と一般的な軌道かと思います。実際には前距離と後距離を調整してスリップ角を対処してやらないといけないのですが、大体こんな感じです。

bandicam 2017-11-22 20-02-23-835
     図5. トレッド幅44mmのスラローム
 トレッド幅を44mmにするだけでこれくらい変わります。柱と距離があいてぶつかる確率が減りました。このスペースが今回の完走率に貢献してくれています。実は私が低トレッドにした理由は別にあります。それは低角度斜め走行ができるようになるということ。斜め直進時以外の旋回の組み合わせの場合、45度や135度、V90のターンはもっと浅く旋回するだけでいいのです。私が導入したアルゴリズムだと、
45度→35度
135度→125度
V90→V80in, V80out, V70
の旋回パラメータを今までとは余分に制作します。これにより、旋回半径を広げるとともに横Gを更に下げることができ、限界突破できそうな気がします。今年は吸引に時間奪われ、間に合わず諦めました。低角度斜めのパス生成アルゴリズム自体は組んであるので、時間があるときにデバッグと旋回調整をして実験してみようと思います。V70のシミュレーション結果は以下の様になります。

bandicam 2017-11-22 20-02-53-373
     図6. V70スラローム軌道
 重心速度1m/s, 角加速度20000deg/ss, 角速度400deg/sのスラロームシミュレーションです。かなり攻めた軌道を通ることが分かります。横Gに関しては、0.89Gから0.71Gまで抑えることが出来ました。それだけスリップ角も小さくなり、重心速度も上げられます。これはトレッド幅が狭くないと曲がれないので実験すらできません。この低角度斜め走行をやりたいが為に、トリファイラの低トレッドにしたのですが、結局時間配分をミスって肝心なところに手が回りませんでした。吸引は次回作でもできるから低トレッドな機体があるうちにやっておくべきだったと後悔しています。

DJAuJFOWsAI3yCG
 今回からDMMの3Dプリントサービスに部品を造形してもらうことにしました。今まではCNCで切削していたのですが、複雑な形が作れなかったりCNCが動いている時は傍にいないといけなかったりと制約が多いので3Dプリンターに手を出しました。3DCADはDesignSpark Mechanicalを使いました。最近はもっと高機能でレンダリング機能がついたCAD、Fusion360があるのでそちらに移行予定です。私はDesignSparkのほうが扱いやすいと思います。
 上のデータをアクリル(Ultra Mode)のブラックで発注して、価格は5,281円(送料込み)でした。安く済ませようと思ったらナイロン製で1,176円ですが、精度が全く違うのでお勧めできません。特にモーターマウントや吸引ファンなどの制度が必要な部分には不向きです。アクリルならそこそこな精度で造形してくれます。

DLDuDOmUMAA616v
 肝心の強度についてですが、扱いが悪いとパーン!って粉々に割れますね。ナイロンの方は多少弾性があるので割れにくいですが、アクリルは硬度が高いので割れてしまいます。モーターマウントとホイールは一度も割れませんでした。吸引ファンにはちょっと厳しいかもしれません。先輩も今シーズンで5個くらいのファンを割ってるみたいです。保持具をしっかり作って基板と掠らせなければ割れないとのことです。

DJBSN3ZUwAAonYI
 ホイールとスパーギヤはこのように設計しました。スパーギヤはM0.3の70枚歯です。AliExpressで購入しました。買った時から6穴の肉抜きがされていたので、その場所にホイールから円柱をプルして固定させました。スパーギヤは固定しないと急加減速時に意外と滑るので、このように固定できると心強いです。それからホイールとシムワッシャーを一体化させてみました。アクリルじゃないと造形できないみたいです。

DItdKzJVwAQtKyp
 タイヤの方はミニッツのワイドタイヤ30°を半分に切って使いました。今回はトレッド幅を狭めたいのでタイヤを細くしました。基本的にはタイヤの太さに関係なくグリップは出ます。車重が重くなるとタイヤが太くないとグリップ力が飽和する問題に直面しますが、このマシンではタイヤが沈むほどの重量はないので大丈夫です。ただ、自分でタイヤを半分にするとどうしても偏りが出来てしまいます。ちょっとくらいジャイロセンサーでどうにでもなるのですが。

DKuEwzjUEAA2ONX
 バッテリーは毎度お馴染みの自分で2S化します。JJRCの150mAh, 30Cのリポを直列にします。まずは分解して、その時にリポの過電流保護回路は取り外します。ここは意見が分かれるところだと思いますが、こんなところでリミットを掛けて欲しくないので私は取り外しています。不安な人は付けておいてください。

jpg large
 今回は横に並べて平たく配置しました。バッテリーの置き場所がモーターの上になってしまうので、申し訳程度の低重心化です。マシンに合わせてバッテリーの形状を変えられるところが自作の魅力です。

DOXTxVJUEAAa7R0
 それから、トリファイラのマウスのセンサー配置はコンパクトでいいですが、初心者にはあまりお勧めできません。バイファイラのセンサー配置の方をお勧めします。その理由は、壁判定及び壁切れ判定の閾値調整がシビアということと、角度によってセンサー値が結構変わるので、ある程度安定した走行ができないと探索すらできない機体になってしまいます。また、壁補正するためのゲイン調整もシビアです。一般的な1717を使うDCマウスは、機体が大きいので、ちょっと位置がズレても壁に当たって補正が効くことがあります。しかしこのマウスは自分で自己位置補正をしてやらないと位置がズレていきます。初心者の方は安定したセンサー配置がいいですよ。

DIu5J6MUQAAyQe8
 マイコンを基板下に置いてみました。マイコンは意外と高さがあり、1mmの基板よりも背が高いので場所には注意が必要です。タイヤのすぐ下なら大丈夫そうな気がします。また、トレッド幅を限界まで小さくするために、ネジを基板で浮かせてマイコンのピンの上でネジ止めするような設計にしてみました。これでも十分止まっているので面白い設計になったと思います。こんなことができるのも個人の趣味ならではなので積極的に取り入れていきましょう。

 毎年恒例のマシンのパラメータを公開します。去年のバイファイラのパラメータより旋回速度がかなり遅くなってます。
<クラシックエキスパート予選の走行パラメータ>
1走目:探索走行
    加速度(加速)    5[m/ss]
    加速度(減速)    10[m/ss]
 最高速度 0.6[m/s]
    旋回速度 0.6[m/s]
2走目:最短走行
    加速度(加速)    10[m/ss]
    加速度(減速)    15[m/ss]
    最高速度 3.0[m/s]
    旋回速度 All 0.6[m/s]
3走目:最短走行(V90で柱に掠りフェイルセーフ発動
    加速度(加速)    10[m/ss]
    加速度(減速)    17[m/ss]
    最高速度 4.0[m/s]
    旋回速度 {L90deg, 45deg, 135deg, V90deg, 180deg}
      {0.9m/s, 0.89m/s, 0.77m/s, 0.7m/s, 0.7m/s}
4走目:最短走行
    加速度(加速)    10[m/ss]
    加速度(減速)    15[m/ss]
    最高速度 4.0[m/s]
    旋回速度 {L90deg, 45deg, 135deg, V90deg, 180deg}
      {0.9m/s, 0.89m/s, 0.77m/s, 0.7m/s, 0.7m/s}
5走目:最短走行(MAXパラメータ
    加速度(加速)    13[m/ss]
    加速度(減速)    20[m/ss]
    最高速度 5.0[m/s]
    旋回速度 {L90deg, 45deg, 135deg, V90deg, 180deg}
      {0.9m/s, 0.89m/s, 0.77m/s, 0.7m/s, 0.7m/s}

<クラシックエキスパート決勝の走行パラメータ>
1走目:探索走行
    加速度(加速)    5[m/ss]
    加速度(減速)    10[m/ss]
 最高速度 0.6[m/s]
    旋回速度 0.6[m/s]
2走目:最短走行
    加速度(加速)    10[m/ss]
    加速度(減速)    15[m/ss]
    最高速度 3.0[m/s]
    旋回速度 All 0.6[m/s]
3走目:最短走行
    加速度(加速)    10[m/ss]
    加速度(減速)    17[m/ss]
    最高速度 4.0[m/s]
    旋回速度 {L90deg, 45deg, 135deg, V90deg, 180deg}
      {0.9m/s, 0.89m/s, 0.77m/s, 0.7m/s, 0.7m/s}
4走目:最短走行(MAXパラメータ
    加速度(加速)    13[m/ss]
    加速度(減速)    20[m/ss]
    最高速度 5.0[m/s]
    旋回速度 {L90deg, 45deg, 135deg, V90deg, 180deg}
      {0.9m/s, 0.89m/s, 0.77m/s, 0.7m/s, 0.7m/s}
5走目:タイムアップより走行せず

MAXパラメータで走らせた動画は以下の通りです。

 今回の正確なタイム測定でわかったことがあります。それは、「パラメータを上げてもタイムが良くなるとは限らない」ということ。上記のパラメータで走らせて、一番の好タイムを記録したのは予選の4走目と決勝の3走目でした。MAXパラメータはタイムロスで遅くなっていました。そもそも減速20[m/ss]はタイヤがスリップしている可能性が高いです。ログでは追従していても、路面とグリップしているかは別問題なので監視できません。減速でスリップしても次のターンの時に壁切れ補正で距離が整うので完走は出来てしまいますが、低速時の距離が長くなるので結果的にタイムロスが発生したと考えられます。これについては、壁切れの補正距離を監視してやれば、スリップしている距離の推測ができると思います。今回は旋回速度が極端に遅いため、低速時の距離の増加はタイム的に大きな悪影響を及ぼしたようです。
 補正が悪いような言い方になっていますが、今回の完走率はとても高いものでした。コケたのは予選の3走目のみ。これは壁補正や壁切れ補正のおかげです。完走率を上げるなら旋回の調整よりも補正の調整をした方がいいと思います。

それでは、今シーズンもお疲れさまでした!
Twitter プロフィール
今の出来事
非公開コメント

管理人へ直接コメントされたい方はこちらからお願いします。

名前
メール
本文
ギャラリー
  • 2018年クラシックマウス「Aventa」について
  • 2018年クラシックマウス「Aventa」について
  • 2018年クラシックマウス「Aventa」について
  • 2018年クラシックマウス「Aventa」について
  • 2018年クラシックマウス「Aventa」について
  • 2018年クラシックマウス「Aventa」について
  • 2018年クラシックマウス「Aventa」について
  • 2018年クラシックマウス「Aventa」について
  • 2018年クラシックマウス「Aventa」について
  • 2018年クラシックマウス「Aventa」について
  • 2018年クラシックマウス「Aventa」について
  • 2018年クラシックマウス「Aventa」について
最新コメント
訪問者数カウンター
  • 今日:
  • 昨日:
  • 累計:

アクセスカウンター
  • 今日:
  • 昨日:
  • 累計:

QRコード
QRコード
  • ライブドアブログ